Fourier Analysis

$$
\text { Mar 28, } 2024
$$

Review.
The (Fourier Inversion formula)
Let $f \in M(\mathbb{R})$. Suppose that $\hat{f} \in M(\mathbb{R})$.
Then

$$
f(x)=\int_{\mathbb{R}} \hat{f}(\xi) e^{2 \pi i \xi x} d \xi
$$

Below we first give an application of the Inversion formula.

The 1 (Plancherel formula).
Let $f \in M(\mathbb{R})$. Suppose $\widehat{f} \in M(\mathbb{R})$.
Then we have

$$
\int_{-\infty}^{\infty}|f(x)|^{2} d x=\int_{-\infty}^{\infty}|\hat{f}(\xi)|^{2} d \xi
$$

Proof. Let $h(x)=\overline{f(-x)}$. Then $h \in M(\mathbb{R})$.
Notice that

$$
\begin{aligned}
\hat{h}(\xi) & =\int_{-\infty}^{\infty} \overline{f(-x)} e^{-2 \pi i \xi x} d x \\
& =\int_{-\infty}^{\infty} \overline{f(-x) \cdot e^{2 \pi i \xi x}} d x \\
& =\overline{\int_{-\infty}^{\infty} f(-x) e^{2 \pi i \xi x} d x}
\end{aligned}
$$

Letting $y=-x$

$$
\begin{aligned}
& \int_{\infty}^{-\infty} f(y) e^{-2 \pi i \xi y} \\
&= \overline{(-) d y} \\
& \hat{f}(\xi) .
\end{aligned}
$$

Let us consider $f * h$.

Notice that $f * h \in M(\mathbb{R})$.

$$
\begin{aligned}
\widehat{f * h}(\xi)=\hat{f}(\xi) \cdot \hat{h}(\xi) & =\hat{f}(\xi) \cdot \bar{f}(\xi) \\
& =|\hat{f}(\xi)|^{2}
\end{aligned}
$$

Hence $\widehat{f_{*} h} \in M(\mathbb{R})$.
Now applying Fourier Inversion formula to $f_{*} \cdot h$, we obtain

$$
\begin{aligned}
f * h(0) & =\int_{-\infty}^{\infty} \widehat{f * h}(\xi) d \xi \\
& =\int_{-\infty}^{\infty}|\hat{f}(\xi)|^{2} d \xi
\end{aligned}
$$

Notice that

$$
f * h(0)=\int_{-\infty}^{\infty} f(x) h(-x) d x
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} f(x) \cdot \overline{f(x)} d x \\
& =\int_{-\infty}^{\infty}|f(x)|^{2} d x .
\end{aligned}
$$

So we obtain

$$
\int_{-\infty}^{\infty}|f(x)|^{2} d x=\int_{-\infty}^{\infty}|\hat{f}(\xi)|^{2} d \xi .
$$

§5.5 Application 1: The time-dependent heat equation on the real line.

Consider the heat equation on the line

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, x \in \mathbb{R}, \quad t>0 \tag{2}\\
u(x, 0)=f(x), \quad x \in \mathbb{R} \quad \text { (initial condition) }
\end{array}\right.
$$

where $U=U(x, t)$ is the temperature at point x and time t.

We first find a solution by a formal argument:
Taking the Fomier transform on both sides of (with respect to x).

$$
\begin{aligned}
\frac{\partial \widehat{U}(\xi, t)}{\partial t} & =(2 \pi i \xi)^{2} \widehat{u}(\xi, t) \\
& =-4 \pi^{2} \xi^{2} \widehat{U}(\xi, t)
\end{aligned}
$$

(check:

$$
\begin{aligned}
& \int_{\mathbb{R}} \frac{\partial u(x, t)}{\partial t} e^{-2 \pi i \xi x} d x \\
& =\frac{\partial}{\partial t} \int_{\mathbb{R}} u(x, t) e^{-2 \pi i \xi x} d x \\
& =\frac{\partial}{\partial t} \hat{u}(\xi, t) \\
& \int_{\mathbb{R}} \frac{\partial^{2} u(x, t)}{\partial^{2} x} e^{-2 \pi i \xi x} d x \\
& =(2 \pi i \xi)^{2} \int_{\mathbb{R}} u(x, t) e^{-2 \pi i \xi x} d x \\
& =-4 \pi^{2} / z^{2} \hat{u}(\xi, t) .
\end{aligned}
$$

Hence we obtain a first order Linear ODE

$$
\frac{d}{d t} \widehat{u}(\xi, t)=-4 \pi^{2} \xi^{2} \widehat{u}(\xi, t)
$$

Fix ξ, we see that

$$
\hat{u}(\xi, t)=A(\xi) \cdot e^{-4 \pi^{2} \xi^{2} t}
$$

$\uparrow($ taking $t=0)$
Observe that from the instal condition (2),

$$
\hat{u}(\xi, 0)=\hat{f}(\xi)
$$

Hence we have $A(\xi)=\hat{f}(\xi)$.

Now we obtain

$$
\widehat{u}(\xi, t)=\hat{f}(\xi) \cdot e^{-4 \pi^{2} \xi^{2} t}
$$

Next we define

$$
H_{t}(x)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}} \quad \text { for } x \in \mathbb{R} \text { and } t>0
$$

Check:

$$
\widehat{\mathscr{H}}_{+}(\xi)=e^{-4 \pi^{2} \xi^{2} t}
$$

Recall $e^{-\pi x^{2}} \xrightarrow{\sigma} e^{-\pi \xi^{2}}$

$$
\begin{aligned}
e^{-\frac{x^{2}}{4 t}}=e^{-\pi\left(\frac{x}{4 \pi t}\right)^{2}} \xrightarrow{\sigma} & \sqrt{4 \pi t} \cdot e^{-\pi \xi^{2} \cdot(4 \pi t)} \\
& =\sqrt{4 \pi} t e^{-4 \pi^{2} \xi^{2} t}
\end{aligned}
$$

We call $\left\{\mathscr{P}_{t}(x)\right\}_{t>0}$ the heat kernel on the real line.

By the above analysis, we see that

$$
\widehat{U}(\xi, t)=\widehat{f^{*} \mathcal{P}_{t}}(\xi) .
$$

Now by the inversion formula, we see that

$$
U(x, t)=f * H_{t}(x)
$$

